

ANNUAL Meeting 2008

August 6, 2008

Investigation of the effect of stopper-rod misalignment on the fluid flow in the water model of continuous casting process

Rajneesh Chaudhary ^a, B. G. Thomas ^a

^a Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, IL, USA, 61801

Go-Gi Lee ^b, Seong-Mook Cho ^b, Seon-Hyo Kim ^b ^b Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, South Korea

Oh-Duck Kwon ^c ^c POSCO Technical Research Laboratories, POSCO, Pohang, Kyungbuk 790-784, S. Korea

Presented by Rajneesh Chaudhary

Project Overview

- Investigate effect of stopper rod misalignment on flow quality in the mold using:
 - 1/3rd scale water model experiments
 - using impeller velocity probe to measure surface velocity
 - Analysis to find time-average velocity, standard deviation and turbulent kinetic energy
 - Computational model
 - 3-D, steady, incompressible Navier-Stokes equations
 - with standard k-e model (RANS approach)
 - using FLUENT
- 3 cases:
 - aligned stopper rod,
 - misaligned (stopper moved to front)
 - misaligned (stopper moved to left).

Process parameters of 1/3rd water model used for stopper-rod misalignment studies

	1/3 rd Water model
Casting speed	0.917 m/min
Water flow rate	34.4 LPM
Mold width	500 mm
Mold thickness	75 mm
Computational domain width	250/500 mm
Computational domain thickness	37.5/75 mm
Computational domain length	1200 mm
SEN depth	60 mm
Density	998.2 kg/m ³ (water)
Viscosity	0.001 kg/m-s (water)
Stopper-rod	Centered (i.e. aligned), front, and left misaligned (2mm)
Nozzle port angle	35 degree
Nozzle port area	23.3 mm (width) x 26.7mm (height)
Nozzle bore diameter (inner/outer)	25 mm/43 mm
Distance between tundish bottom and nozzle bottom	560 mm
Solidifying shell and gas injection	no
Domain bottom	no

nuous asting Consortium

Model Validation: Comparison of average surface velocityVinuous
Casting
Consortiumbetween measurements and predictions

	(unit: m/s)	60mm from left NF	150mm from left NF		150mm from right NF	60mm from right NF	
Center	Measurements	0.093	0.098		0.103	0.094	
	Standard deviation	0.018	0.018		0.019	0.022	
	Predictions	0.102	0.120		0.120	0.102	
Front	Measurements	0.094	0.105	Nozzle	0.096	0.096	
	Standard deviation	0.018	0.019		0.018	0.021	
	Predictions	0.097	0.122		0.122	0.097	
Left	Measurements	0.096	0.084		0.111	0.105	
	Standard deviation	0.023	0.016		0.018	0.017	
	Predictions	0.084	0.060		0.1041	0.095	

Metals Processing Simulation Lab

University of Illinois at Urbana-Champaign

Atinuous Casting Consortium

Discussion of model validation (Average surface velocity)

- At 60mm from narrow face, predictions match well with experiments:
 maximum error of 14% in left misaligned case on left side,
 otherwise less than 9%.
- At 150 mm from narrow face, model slightly over-predicts experiments: maximum error is ~25%
 (average in left side of left mised area where error is . 40%)
 - (except in left side of left misaligned case where error is ~40%).
- Reason for maximum error in left side of left-misaligned case might be the complex vortexing flow pattern at this location.
- Higher surface velocity is expected at 150mm from narrow face because it is closer to midway between SEN and NF than 60mm.
 Simulations predict this.

- Surprisingly, experiments give similar velocities at 60 and 150 mm in aligned and front misaligned cases.

7

R Chaudhary

Model validation: Comparison of predicted turbulent kinetic energy with measurements

	(unit: m²/s²)	60mm from left NF	150mm from left NF		150mm from right NF	60mm from right NF	
Center	Measurements	4.6e-04	3.15e-04		3.53e-04	3.23e-04	
	Predictions	6.9e-04	3.75e-04		3.75e-04	6.9e-04	
Front	Measurements	4.24e-04	3.68e-04	Nozzle	3.38e-04	3.19e-04	
	Predictions	7.24e-04	5.33e-04		5.33e-04	7.24e-04	
Left	Measurements	5.47e-04	2.69e-04		3.25e-04	2.83e-04	
	Predictions	3.57e-04	1.4e-04		3.0e-04	5.02e-04	

1) Turbulent kinetic energy matches quite well (same order) in all cases with simulations.

 Turbulent kinetic energy also has right-left symmetry in aligned and front misaligned cases, although asymmetry is seen in left misaligned case. Trend is reverse in simulations at 60 mm from narrow face.

- Turbulence always matches better at surface than at jet. (also observed in well and mountain bottom comparison studies).
- 4) Observed differences of ~50% are expected due to anisotropy of real turbulence, total measurement time, sampling frequency and numerical errors (truncation and round off).

Jet characteristics in aligned, front misaligned and left misaligned cases

Casting Consortium misaligne	d and	d left	misal	igneo	d case	es
	Centered		Front misaligned stopper-rod		Left misaligned stopper- rod	
	Left	Right	Left	Right	Left	Right
Weighted average nozzle port velocity in x- direction (outward) (m/s)	0.66	0.66	0.68	0.68	0.73	0.69
Weighted average nozzle port velocity in y- direction (downward) (m/s)	0.53	0.53	0.51	0.51	0.53	0.35
Weighted average nozzle port velocity in z- direction (horizontal) (m/s)	0.058	0.058	0.022	0.022	0.055	0.021
Weighted average nozzle port turbulent kinetic energy (m²/s²)	0.060	0.060	0.026	0.026	0.020	0.028
Weighted average nozzle port turbulent kinetic energy dissipation rate (m²/s³)	3.24	3.24	1.15	1.15	0.83	1.29
Vertical jet angle (degree)	39	39	37	37	36	27
Horizontal jet angle (degree)	0	0	1.9	1.9	0	0
Horizontal spread (half) angle (degree)	5.08	5.08	-	-	4.33	1.76
Average jet speed (m/s)	0.85	0.85	0.85	0.85	0.91	0.78
Back-flow zone (%)	19	19	19	19	28	12
Flow rate (%)	50	50	50	50	46	54
Maximum velocity magnitude (m/s)	1.23	1.23	1.16	1.16	1.09	1.06

Maximum surface velocity is towards front side (front-back asymmetry)

Left misalignment causes vortex formation (which is sensitive to mesh)

1) Jet hits almost at the same location (180mm) on the left side with three misalignments, on the right side, in left misalignment case jet impinges slightly above (140mm) the other two

Strong downward flow Left side

Downward flow

Weak reverse flow

Right side

- 1) Flow has right-left symmetry (within standard deviation) at both locations (i.e. 60mm and 150 mm), as expected in aligned stopper case.
- 2) Asymmetry is worse at 150 mm location (than at 60mm) due to intermittent vortexing and flow near SEN.

- 1) Flow is symmetric at ~60 mm from narrow face, (within standard deviation).
- 2) Asymmetry is significant at 150mm from narrow face (i.e. close to SEN).
- 3) Right side surface velocity is higher than left side, because of lower vertical jet angle and higher mass flow rate from right port. Same result from model predictions.

Predicted free surface level

- Left narrow face
 Right narrow face

 1) Surface level in aligned and front misaligned cases are similar shape and typical
 (higher close to narrow faces and SEN) as common in double roll pattern flow.
- 2) In left misalignment, surface is generally flatter due to lower surface velocity.
- do and aloo drong aloog to N whore vertex •

Un	iversity of Illinois at Urbana-Champaign • Metals Processing Simulation Lab • R Chaudhary 23
Contro	Summary
•	Effect of stopper rod misalignment has been studied for 3 cases:
•	(aligned, 2000) from montaligned, 2 mm left misaligned).
•	at two locations (60mm and 150mm).
•	No significant right-left asymmetry predicted near narrow face for all cases.
	Experiments agree at 60 mm from narrow face. Right-left asymmetry predicted from 65 mm to SEN in left misaligned simulations
	Experiments agree at 150mm from NF.
•	In front misalignment, flow from UTN region higher momentum hits the bottom of nozzle towards front side and exits the front of ports but is directed towards back side of mold (WF).
•	Asymmetry is higher near SEN than near NF.
•	In left misalignment, right port has higher mass flow rate (54%) but lower velocity, and shallower jet.
•	Vortices are found on the left side in left misalignment case. The cause of vortex formation is one surface stream having higher flow momentum towards the SEN than the other, which generates rotational flow.
•	Vortices are believed to have significant contribution to mold powder entrapment and entrapped flux may be carried down deeply into the mold leading to sliver defects.
•	Stopper rod misalignment has significant effect on fluid flow: Left misalignment causes left-right asymmetry

Acknowledgments

25

R Chaudhary

 Continuous Casting Consortium members (Baosteel, Corus, Goodrich, Labein, LWB Refractories, Mittal, Nucor, Postech, Steel Dynamics, Ansys Inc.)

POSCO, South Korea

University of Illinois at Urbana-Champaign

• Seong-Yeon Kim and Graduate students at Metal Processing Simulation Laboratory, UIUC.

Metals Processing Simulation Lab

•